Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.846
Filtrar
1.
Mymensingh Med J ; 33(2): 461-465, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38557526

RESUMO

Urothelial carcinoma (UC) is the most common malignancy of urinary bladder. It is the 9th leading cause of death worldwide and second most common genitourinary malignancy among male. Incidence is increasing in developing countries like Bangladesh. About 80% of patients are found between 50 to 80 years of age. It is 3-4 times more common in male than in female. Determination of therapeutic strategy and prediction of progression of urothelial carcinoma is a major clinical challenge. Treatment of urothelial carcinoma still now mostly depends on pathological stages. Amplification or genomic alteration of Cyclin D1 (a proto-oncogene) may cause protein overexpression which is frequently realized as a clonal pathology in various human neoplasms including bladder cancer. Evaluation of Cyclin D1 expression is promising for guiding therapeutic strategies, risk stratification and prediction of tumor progression. The aim of the study was to determine the expression of Cyclin D1 in urothelial carcinoma of urinary bladder and its association with tumour grade. This cross-sectional observational study was conducted in Department of Pathology, Dhaka Medical College, Dhaka, Bangladesh from July 2019 to June 2021. Histomorphologically diagnosed 51 urothelial carcinomas were included. Sections were stained with hematoxylin and eosin. Immunostaining with Cyclin D1 antibody was also done. Relevant information was collected and recorded in a predesigned data sheet. Statistical analysis was carried out as required. Mean age ±SD was 57.8±10.55 years. Male female ratio was 4.6:1. In this study 39(76.5%) patients were smoker. Regarding clinical presentations 36(70.6%) patients presented with painless hematuria alone. Lateral wall (64.7%) was the most frequent tumor location. Among 51 cases, 38(74.5%) cases were high grade urothelial carcinoma (HGUC) and 13(25.5%) cases were low grade urothelial carcinoma (LGUC). Considering Cyclin D1 expression, most of the LGUC cases showed high level of expression by both percentage (84.6%) and intensity (84.6%). Most of the HGUC cases showed low level of expression by both percentage (63.2%) and intensity (60.5%). Cyclin D1 showed significant inverse association with HGUC (p<0.05). In urothelial carcinoma of urinary bladder, Cyclin D1 expression was decreased with increasing grade of the tumor. Cyclin D1 expression was inversely associated with tumour grade.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Feminino , Humanos , Masculino , Bangladesh/epidemiologia , Carcinoma de Células de Transição/metabolismo , Carcinoma de Células de Transição/patologia , Estudos Transversais , Ciclina D1/metabolismo , Bexiga Urinária/metabolismo , Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia
2.
Nat Commun ; 15(1): 2818, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561369

RESUMO

Interplay between innate and adaptive immune cells is important for the antitumor immune response. However, the tumor microenvironment may turn immune suppressive, and tumor associated macrophages are playing a role in this transition. Here, we show that CD276, expressed on tumor-associated macrophages (TAM), play a role in diminishing the immune response against tumors. Using a model of tumors induced by N-butyl-N-(4-hydroxybutyl) nitrosamine in BLCA male mice we show that genetic ablation of CD276 in TAMs blocks efferocytosis and enhances the expression of the major histocompatibility complex class II (MHCII) of TAMs. This in turn increases CD4 + and cytotoxic CD8 + T cell infiltration of the tumor. Combined single cell RNA sequencing and functional experiments reveal that CD276 activates the lysosomal signaling pathway and the transcription factor JUN to regulate the expression of AXL and MerTK, resulting in enhanced efferocytosis in TAMs. Proving the principle, we show that simultaneous blockade of CD276 and PD-1 restrain tumor growth better than any of the components as a single intervention. Taken together, our study supports a role for CD276 in efferocytosis by TAMs, which is potentially targetable for combination immune therapy.


Assuntos
Macrófagos Associados a Tumor , Neoplasias da Bexiga Urinária , Animais , Masculino , Camundongos , 60574 , Evasão da Resposta Imune , Macrófagos/metabolismo , Fatores de Transcrição/metabolismo , Microambiente Tumoral , Neoplasias da Bexiga Urinária/metabolismo
3.
Sci Rep ; 14(1): 8324, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594513

RESUMO

Bladder cancer (BLCA) is a common malignant tumor in urinary system all over the world. However, due to its high recurrence rate and complex causes, clinicians often have limited options for surgical and drug treatments. Recent researchs on the molecular mechanism of BLCA have reveals its biological progress and potential for early diagnosis. Serine hydroxymethyltransferase 1/2 (SHMT1/2) is a crucial enzyme in the one-carbon metabolism of tumor cells, and the expression levels of these isozymes have been found to be associated with the biological progression of various malignant tumors. However, the impact of SHMT1/2 on the biological progression of bladder cancer and its molecular regulation mechanism remain unclear. In this research utilizes BLCA clinical sample data, the TCGA database, and in vitro cell experiments to predict the expression levels of SHMT1/2 in BLCA. The findings indicate that SHMT1 remained unchanged, while SHMT2 expression is increased in BLCA, which was related to poor prognosis. Additionally, SHMT2 affects the growth, migration, and apoptosis of bladder cancer cells in vitro. It also influences the expression levels of E-cadherin and N-cadherin, ultimately impacting the malignant biological progression of bladder tumors. These results establish a correlation between SHMT2 and the malignant biological progression of BLCA, providing a theoretical basis for the early diagnosis and treatment of bladder cancer.


Assuntos
Glicina Hidroximetiltransferase , Neoplasias da Bexiga Urinária , Humanos , Glicina Hidroximetiltransferase/genética , Neoplasias da Bexiga Urinária/metabolismo , Serina/metabolismo , Prognóstico
4.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542319

RESUMO

Bladder cancer (BCa) research relying on Omics approaches has increased over the last few decades, improving the understanding of BCa pathology and contributing to a better molecular classification of BCa subtypes. To gain further insight into the molecular profile underlying the development of BCa, a systematic literature search was performed in PubMed until November 2023, following the PRISMA guidelines. This search enabled the identification of 25 experimental studies using mass spectrometry or nuclear magnetic resonance-based approaches to characterize the metabolite signature associated with BCa. A total of 1562 metabolites were identified to be altered by BCa in different types of samples. Urine samples displayed a higher likelihood of containing metabolites that are also present in bladder tumor tissue and cell line cultures. The data from these comparisons suggest that increased concentrations of L-isoleucine, L-carnitine, oleamide, palmitamide, arachidonic acid and glycoursodeoxycholic acid and decreased content of deoxycytidine, 5-aminolevulinic acid and pantothenic acid should be considered components of a BCa metabolome signature. Overall, molecular profiling of biological samples by metabolomics is a promising approach to identifying potential biomarkers for early diagnosis of different BCa subtypes. However, future studies are needed to understand its biological significance in the context of BCa and to validate its clinical application.


Assuntos
Biomarcadores Tumorais , Neoplasias da Bexiga Urinária , Humanos , Biomarcadores Tumorais/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Bexiga Urinária/patologia , Metabolômica/métodos , Metaboloma
5.
Hum Cell ; 37(3): 801-816, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38519725

RESUMO

Bladder cancer is one of the most prevalent cancers worldwide. Moreover, if not optimally treated, bladder cancer is a significant burden on healthcare systems due to multiple recurrences which often require more aggressive therapies. Therefore, targeted anti-cancer therapies, developed based on an in-depth understanding of specific proteins and molecular mechanisms, are promising in cancer treatment. Here, for the first time, we presented the new approaches indicating that intracellular adhesion molecule-1 (ICAM-1) may play a potential role in enhancing therapeutic effectiveness for bladder cancer. In the present study, we presented that ICAM-1 expression as well as its regulation in bladder cancer is strongly correlated with the high expression of N-cadherin. Importantly, the presence of N-cadherin and its regulator-TWIST-1 was abolished when ICAM-1 was silenced. We identified also that ICAM-1 is capable of regulating cellular migration, proliferation, and EMT progression in bladder cancer cells via the N-cadherin/SRC/AKT/GSK-3ß/ß-catenin signaling axis. Therefore, we propose ICAM-1 as a novel metastatic marker for EMT progression, which may also be used as a therapeutic target in bladder cancer.


Assuntos
Molécula 1 de Adesão Intercelular , Neoplasias da Bexiga Urinária , Humanos , Molécula 1 de Adesão Intercelular/genética , Linhagem Celular Tumoral , Glicogênio Sintase Quinase 3 beta , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/terapia , Neoplasias da Bexiga Urinária/metabolismo , Caderinas/genética , Caderinas/metabolismo , Transição Epitelial-Mesenquimal/genética , Movimento Celular/genética
6.
Cell Death Dis ; 15(3): 204, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467612

RESUMO

Mitochondria play a multifaceted role in supporting bladder cancer progression. Translocase of inner mitochondrial membrane 44 (TIMM44) is essential for maintaining function and integrity of mitochondria. We here tested the potential effect of MB-10 (MitoBloCK-10), a first-in-class TIMM44 blocker, against bladder cancer cells. TIMM44 mRNA and protein expression is significantly elevated in both human bladder cancer tissues and cells. In both patient-derived primary bladder cancer cells and immortalized (T24) cell line, MB-10 exerted potent anti-cancer activity and inhibited cell viability, proliferation and motility. The TIMM44 blocker induced apoptosis and cell cycle arrest in bladder cancer cells, but failed to provoke cytotoxicity in primary bladder epithelial cells. MB-10 disrupted mitochondrial functions in bladder cancer cells, causing mitochondrial depolarization, oxidative stress and ATP reduction. Whereas exogenously-added ATP and the antioxidant N-Acetyl Cysteine mitigated MB-10-induced cytotoxicity of bladder cancer cells. Genetic depletion of TIMM44 through CRISPR-Cas9 method also induced robust anti-bladder cancer cell activity and MB-10 had no effect in TIMM44-depleted cancer cells. Contrarily, ectopic overexpression of TIMM44 using a lentiviral construct augmented proliferation and motility of primary bladder cancer cells. TIMM44 is important for Akt-mammalian target of rapamycin (mTOR) activation. In primary bladder cancer cells, Akt-S6K1 phosphorylation was decreased by MB-10 treatment or TIMM44 depletion, but enhanced after ectopic TIMM44 overexpression. In vivo, intraperitoneal injection of MB-10 impeded bladder cancer xenograft growth in nude mice. Oxidative stress, ATP reduction, Akt-S6K1 inhibition and apoptosis were detected in MB-10-treated xenograft tissues. Moreover, genetic depletion of TIMM44 also arrested bladder cancer xenograft growth in nude mice, leading to oxidative stress, ATP reduction and Akt-S6K1 inhibition in xenograft tissues. Together, targeting overexpressed TIMM44 by MB-10 significantly inhibits bladder cancer cell growth in vitro and in vivo.


Assuntos
Transdução de Sinais , Neoplasias da Bexiga Urinária , Camundongos , Animais , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos Nus , Bexiga Urinária/metabolismo , Proliferação de Células , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Apoptose , Trifosfato de Adenosina/farmacologia , Linhagem Celular Tumoral , Mamíferos , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial
7.
Cell Mol Biol Lett ; 29(1): 39, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504159

RESUMO

BACKGROUND: IGF2BP3 functions as an RNA-binding protein (RBP) and plays a role in the posttranscriptional control of mRNA localization, stability, and translation. Its dysregulation is frequently associated with tumorigenesis across various cancer types. Nonetheless, our understanding of how the expression of the IGF2BP3 gene is regulated remains limited. The specific functions and underlying mechanisms of IGF2BP3, as well as the potential benefits of targeting it for therapeutic purposes in bladder cancer, are not yet well comprehended. METHODS: The mRNA and protein expression were examined by RT-qPCR and western blotting, respectively. The methylation level of CpG sites was detected by Bisulfite sequencing PCR (BSP). The regulation of IGF2BP3 expression by miR-320a-3p was analyzed by luciferase reporter assay. The functional role of IGF2BP3 was determined through proliferation, colony formation, wound healing, invasion assays, and xenograft mouse model. The regulation of HMGB1 by IGF2BP3 was investigated by RNA immunoprecipitation (RIP) and mRNA stability assays. RESULTS: We observed a significant elevation in IGF2BP3 levels within bladder cancer samples, correlating with more advanced stages and grades, as well as an unfavorable prognosis. Subsequent investigations revealed that the upregulation of IGF2BP3 expression is triggered by copy number gain/amplification and promoter hypomethylation in various tumor types, including bladder cancer. Furthermore, miR-320a-3p was identified as another negative regulator in bladder cancer. Functionally, the upregulation of IGF2BP3 expression exacerbated bladder cancer progression, including the proliferation, migration, and invasion of bladder cancer. Conversely, IGF2BP3 silencing produced the opposite effects. Moreover, IGF2BP3 expression positively correlated with inflammation and immune infiltration in bladder cancer. Mechanistically, IGF2BP3 enhanced mRNA stability and promoted the expression of HMGB1 by binding to its mRNA, which is a factor that promotes inflammation and orchestrates tumorigenesis in many cancers. Importantly, pharmacological inhibition of HMGB1 with glycyrrhizin, a specific HMGB1 inhibitor, effectively reversed the cancer-promoting effects of IGF2BP3 overexpression in bladder cancer. Furthermore, the relationship between HMGB1 mRNA and IGF2PB3 is also observed in mammalian embryonic development, with the expression of both genes gradually decreasing as embryonic development progresses. CONCLUSIONS: Our present study sheds light on the genetic and epigenetic mechanisms governing IGF2BP3 expression, underscoring the critical involvement of the IGF2BP3-HMGB1 axis in driving bladder cancer progression. Additionally, it advocates for the investigation of inhibiting IGF2BP3-HMGB1 as a viable therapeutic approach for treating bladder cancer.


Assuntos
Proteína HMGB1 , MicroRNAs , Neoplasias da Bexiga Urinária , Humanos , Animais , Camundongos , MicroRNAs/genética , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Linhagem Celular Tumoral , Carcinogênese/genética , Metilação de DNA , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estabilidade de RNA , Inflamação/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Mamíferos/genética
8.
Biochem Pharmacol ; 222: 116111, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458329

RESUMO

Bladder cancer (BC) is the most common cancer of the urinary tract, with poor survival, high recurrence rates, and lacking of targeted drugs. In this study, we constructed a library to screen compounds inhibiting bladder cancer cells growth. Among them, SRT1720 was identified to inhibit bladder cancer cell proliferation in vitro and in vivo. SRT1720 treatment also suppressed bladder cancer cells migration, invasion and induced apoptosis. Mechanism studies shown that SRT1720 promoted autophagosomes accumulation by inducing early-stage autophagy but disturbed the late-stage of autophagy by blocking fusion of autophagosomes and lysosomes. SRT1720 appears to induce autophagy related proteins expression and alter autophagy-related proteins acetylation to impede the autophagy flux. LAMP2, an important lysosomal associated membrane protein, may mediate SRT1720-inhibited autophagy flux as SRT1720 treatment significantly deacetylated LAMP2 which may influence its activity. Taken together, our results demonstrated that SRT1720 mediated apoptosis and autophagy flux inhibition may be a novel therapeutic strategy for bladder cancer treatment.


Assuntos
Autofagia , Neoplasias da Bexiga Urinária , Humanos , Autofagossomos/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/metabolismo , Apoptose , Lisossomos/metabolismo
9.
Phytomedicine ; 127: 155503, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490077

RESUMO

BACKGROUND: Natural products have demonstrated significant potential in cancer drug discovery, particularly in renal cancer (RCa), urothelial carcinoma (UC), and testicular cancer (TC). PURPOSE: This review aims to examine the effects of natural products on RCa, UC and TC. STUDY DESIGN: systematic review METHODS: PubMed and Web of Science databases were retrieved to search studies about the effects of natural products and derivatives on these cancers. Relevant publications in the reference list of enrolled studies were also checked. RESULTS: This review highlighted their diverse impacts on key aspects such as cell growth, apoptosis, metastasis, therapy response, and the immune microenvironment. Natural products not only hold promise for novel drug development but also enhance the efficacy of existing chemotherapy and immunotherapy. Importantly, we exert their effects through modulation of critical pathways and target genes, including the PI3K/AKT pathway, NF-κB pathway, STAT pathway and MAPK pathway, among others in RCa, UC, and TC. CONCLUSION: These mechanistic insights provide valuable guidance for researchers, facilitating the selection of promising natural products for cancer management and offering potential avenues for further gene regulation studies in the context of cancer treatment.


Assuntos
Produtos Biológicos , Carcinoma de Células de Transição , Neoplasias Embrionárias de Células Germinativas , Neoplasias Testiculares , Neoplasias da Bexiga Urinária , Masculino , Humanos , Carcinoma de Células de Transição/genética , Carcinoma de Células de Transição/metabolismo , Carcinoma de Células de Transição/patologia , Neoplasias da Bexiga Urinária/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Testiculares/tratamento farmacológico , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Transdução de Sinais , Microambiente Tumoral
10.
Biol Direct ; 19(1): 20, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454507

RESUMO

CircLRIG1, a newly discovered circRNA, has yet to have its potential function and biological processes reported. This study explored the role of circLRIG1 in the development and progression of bladder carcinoma and its potential molecular mechanisms. Techniques such as qRT-PCR, Western blot, various cellular assays, and in vivo models were used to investigate mRNA and protein levels, cell behavior, molecular interactions, and tumor growth. The results showed that both circLRIG1 and LRIG1 were significantly reduced in bladder carcinoma tissues and cell lines. Low circLRIG1 expression was associated with poor patient prognosis. Overexpressing circLRIG1 inhibited bladder carcinoma cell growth, migration, and invasion, promoted apoptosis, and decreased tumor growth and metastasis in vivo. Importantly, circLRIG1 was found to sponge miR-214-3p, enhancing LRIG1 expression, and its overexpression also modulated protein levels of E-cadherin, N-cadherin, Vimentin, and LRIG1. Similar effects were observed with LRIG1 overexpression. Notably, a positive correlation was found between circLRIG1 and LRIG1 expression in bladder carcinoma tissues. Additionally, the tumor-suppressing effect of circLRIG1 was reversed by overexpressing miR-214-3p or silencing LRIG1. The study concludes that circLRIG1 suppresses bladder carcinoma progression by enhancing LRIG1 expression via sponging miR-214-3p, providing a potential strategy for early diagnosis and treatment of bladder carcinoma.


Assuntos
Carcinoma , MicroRNAs , Neoplasias da Bexiga Urinária , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Bexiga Urinária/metabolismo , Bexiga Urinária/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Carcinoma/genética , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Glicoproteínas de Membrana/metabolismo
11.
Cancer Med ; 13(4): e6962, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38457207

RESUMO

BACKGROUND: Though programmed cell death-ligand 1 (PD-L1) has been used in predicting the efficacy of immune checkpoint blockade (ICB), it is insufficient as a single biomarker. As a key effector of an intrinsically mutagenic microhomology-mediated end joining (MMEJ) pathway, DNA polymerase theta (POLQ) was overexpressed in various malignancies, whose expression might have an influence on genomic stability, therefore altering the sensitivity to chemotherapy and immunotherapy. METHODS: A total of 1304 patients with muscle-invasive bladder cancer (MIBC) from six independent cohorts were included in this study. The Zhongshan Hospital (ZSHS) cohort (n = 134), The Cancer Genome Atlas (TCGA) cohort (n = 391), and the Neo-cohort (n = 148) were included for the investigation of chemotherapeutic response. The IMvigor210 cohort (n = 234) and the UNC-108 cohort (n = 89) were used for the assessment of immunotherapeutic response. In addition, the relationship between POLQ and the immune microenvironment was assessed, and GSE32894 (n = 308) was used only for the evaluation of the immune microenvironment. RESULTS: We identified POLQhigh PD-L1high patients could benefit more from immunotherapy and platinum-based chemotherapy. Further analysis revealed that high POLQ expression was linked to chromosome instability and higher tumor mutational burden (TMB), which might elicit the production of neoantigens. Further, high POLQ expression was associated with an active tumor immune microenvironment with abundant infiltration of immune effector cells and molecules. CONCLUSIONS: The study demonstrated that high POLQ expression was correlated with chromosome instability and antitumor immune microenvironment in MIBC, and the combination of POLQ and PD-L1 could be used as a superior companion biomarker for predicting the efficacy of immunotherapy.


Assuntos
Antígeno B7-H1 , Neoplasias da Bexiga Urinária , Humanos , Antígeno B7-H1/metabolismo , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/terapia , Neoplasias da Bexiga Urinária/metabolismo , Biomarcadores , Imunoterapia , Instabilidade Cromossômica , Músculos/metabolismo , Músculos/patologia , Microambiente Tumoral
12.
Genes Genomics ; 46(4): 437-449, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38438666

RESUMO

BACKGROUND: Bladder cancer is a prevalent malignancy. CDC20, a pivotal cell cycle regulator gene, plays a significant role in tumour cell proliferation, but its role in bladder cancer remains unclear. OBJECTIVE: This study aimed to analyse CDC20 expression in bladder cancer and explore its roles in tumour progression, treatment response, patient prognosis, and cellular proliferation mechanisms. METHODS: We systematically analysed CDC20 expression in bladder cancer using bioinformatics. Our study investigated the impact of CDC20 on chemotherapy and radiotherapy sensitivity, patient prognosis, and changes in CDC20 methylation levels. We also explored the role and potential underlying mechanisms of CDC20 in bladder cancer cell growth. We used lentiviral transfection to downregulate CDC20 expression in 5637 and T24 cells, followed by CCK-8, colony formation, scratch, invasion, apoptosis, and cell cycle analyses. RESULTS: CDC20 is highly expressed in bladder cancer and is significantly correlated with poor prognosis. Moreover, CDC20 demonstrated high diagnostic potential for bladder cancer (AUC > 0.9). The tumour methylation levels of CDC20 in tumour tissues markedly decreased compared with those in normal tissues, and lower methylation levels were associated with a worse prognosis. Elevated CDC20 expression is linked to increased mutation burden. Our findings suggested a potential association between high CDC20 expression and resistance to chemotherapy and radiotherapy, as CDC20 expression may impact immune cell infiltration levels. Mechanistic analysis revealed the influence of CDC20 on bladder cancer cell proliferation through cell cycle-related pathways. According to the cell experiments, CDC20 downregulation significantly impedes bladder cancer cell proliferation and invasion, leading to G1 phase arrest. CONCLUSION: Aberrantly high CDC20 expression promotes tumour progression in bladder cancer, resulting in a poor prognosis, and may also constitute a promising therapeutic target.


Assuntos
Neoplasias da Bexiga Urinária , Humanos , Linhagem Celular Tumoral , Neoplasias da Bexiga Urinária/metabolismo , Proliferação de Células/genética , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Biologia Computacional , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo
13.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542435

RESUMO

Muscle-invasive bladder cancer (MIBC) remains a pressing health concern due to conventional treatment failure and significant molecular heterogeneity, hampering the development of novel targeted therapeutics. In our quest for novel targetable markers, recent glycoproteomics and bioinformatics data have pinpointed (glucose transporter 1) GLUT1 as a potential biomarker due to its increased expression in tumours compared to healthy tissues. This study explores this hypothesis in more detail, with emphasis on GLUT1 glycosylation patterns and cancer specificity. Immunohistochemistry analysis across a diverse set of human bladder tumours representing all disease stages revealed increasing GLUT1 expression with lesion severity, extending to metastasis, while remaining undetectable in healthy urothelium. In line with this, GLUT1 emerged as a marker of reduced overall survival. Revisiting nanoLC-EThcD-MS/MS data targeting immature O-glycosylation on muscle-invasive tumours identified GLUT1 as a carrier of short glycosylation associated with invasive disease. Precise glycosite mapping uncovered significant heterogeneity between patient samples, but also common glycopatterns that could provide the molecular basis for targeted solutions. Immature O-glycosylation conferred cancer specificity to GLUT1, laying the molecular groundwork for enhanced targeted therapeutics in bladder cancer. Future studies should focus on a comprehensive mapping of GLUT1 glycosites for highly specific cancer-targeted therapy development for bladder cancer.


Assuntos
Espectrometria de Massas em Tandem , Neoplasias da Bexiga Urinária , Humanos , Glicosilação , Transportador de Glucose Tipo 1/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Bexiga Urinária/patologia
14.
Cell Signal ; 117: 111111, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38395184

RESUMO

BACKGROUND: Cytochrome C oxidase assembly factor 6 (COA6) is significantly involved in the progression of cancer and is aberrantly expressed in disease. Nevertheless, the comprehensive analysis of COA6 using many omics techniques, and its impact on the prognosis and immunological microenvironment of cancer patients, remains unexplored. METHODS: We gathered data from 33 cancer cases and conducted a thorough analysis of abnormalities in COA6 gene expression. This analysis included examining its relevance to disease, its diagnostic and prognostic value, pathway enrichment, the immune microenvironment, its association with immune checkpoints, and its ability to predict patient response to immunotherapy and natural small molecule drugs that target the COA6 protein. Ultimately, we examined the function of COA6 in bladder cancer by in vitro research. RESULTS: Our study revealed significant variations in gene expression and identified COA6 as a potential diagnostic biomarker for cancer. COA6 was also discovered to have a crucial function in pan-cancer involving the tumor microenvironment. COA6 has a strong correlation with well-known immunological checkpoints, including TMB and MSI. Molecular docking identified natural small chemical inhibitors that specifically target the COA6 protein. Ultimately, scientific evidence has verified that suppressing the expression of the COA6 gene hinders the growth and infiltration of bladder cancer cells. CONCLUSIONS: Our study emphasizes the significant potential of COA6 as a predictive and immunotherapeutic response biomarker. This finding may lead to future investigation into the mechanism of tumor infiltration and the therapeutic possibilities of COA6 in cancer.


Assuntos
Proteínas de Transporte , Proteínas Mitocondriais , Neoplasias da Bexiga Urinária , Humanos , Biomarcadores , Proteínas de Transporte/metabolismo , Proteínas Mitocondriais/metabolismo , Simulação de Acoplamento Molecular , Prognóstico , Microambiente Tumoral , Bexiga Urinária , Neoplasias da Bexiga Urinária/metabolismo
15.
Sci Rep ; 14(1): 2782, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38307969

RESUMO

Bladder cancer (BC) is a crisis to human health. It is necessary to understand the molecular mechanisms of the development and progression of BC to determine treatment options. Publicly available expression data were obtained from TCGA and GEO databases to spot differentially expressed genes (DEGs) between cancer and normal bladder tissues. Weighted co-expression networks were constructed, and Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed. Associations in hub genes, immune infiltration, and immune therapy were evaluated separately. Protein-protein interaction (PPI) networks for the genes identified in the normal and tumor groups were launched. 3461 DEGs in the TCGA dataset and 1069 DEGs in the GSE dataset were identified, including 87 overlapping genes between cancer and normal bladder groups. Hub genes in the tumor group were mainly enriched for cell proliferation, while hub genes in the normal group were related to the synthesis and secretion of neurotransmitters. Based on survival analysis, CDH19, RELN, PLP1, and TRIB3 were considerably associated with prognosis (P < 0.05). CDH19, RELN, PLP1, and TRIB3 may play important roles in the development of BC and are potential biomarkers in therapy and prognosis.


Assuntos
Neoplasias da Bexiga Urinária , Bexiga Urinária , Humanos , Bexiga Urinária/metabolismo , Redes Reguladoras de Genes , Perfilação da Expressão Gênica , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Processos Neoplásicos , Biologia Computacional , Regulação Neoplásica da Expressão Gênica
16.
Anticancer Drugs ; 35(4): 362-370, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38385960

RESUMO

OBJECTIVE: To study the diagnostic value of mRNA expression in urinary exocrine body in bladder cancer. METHODS: From February 2022 to December 2022, 60 patients diagnosed with bladder cancer by pathology in the Department of Urology, Affiliated Hospital of Chengde Medical University were selected as the case group. In total, 40 healthy subjects receiving physical examinations were selected as the control group. 100 mL of morning urine samples were collected from the subjects in both groups based on the same standard. Three subjects were randomly selected from each group. Urinary exosomes were extracted by differential ultracentrifugation. High-throughput sequencing (RNA-seq) was used to detect mRNA expression profiles in urinary exosomes and identify differentially expressed genes. Bioinformatic analysis was performed to predict major biological functions of differentially expressed genes and related signaling pathways. RT-PCR validated expression levels of differentially expressed genes in urinary exosomes between the two groups. ROC curves evaluated the diagnostic value of differential genes for bladder cancer. Spearman's correlation analysis determined correlations between differentially expressed genes and the occurrence of bladder cancer. ROC curves speculated the diagnostic value of using combined differentially expressed genes. RESULTS: Compared with normal subjects, there were 189 significantly differentially expressed genes in urinary exosomes of bladder cancer patients, including 33 up-regulated and 156 down-regulated. According to go and kyoto encyclopedia of genes and genomes (KEGG) analysis, the above differentially expressed genes may participate in the occurrence and development of bladder cancer through the MAPK pathway, PPAP signaling pathway, PI3K Akt signaling pathway and Hippo signaling pathway, affect protein and lipid metabolism, RNase activity, polysaccharide synthesis, signal transduction and other biological processes, and participate in cell proliferation, death, movement and adhesion, as well as cell differentiation and signal transduction. RT-PCR verified that the expression of tmeff1, SDPR, ACBD7, SCG2 and COL6A2 in the two groups of samples was statistically significant ( P  < 0.05). The ROC curve showed that the area under curve area under the curve of the five differential genes were 0.6934, 0.7746, 0.7239, 0.6396 and 0.6610, respectively. The sensitivity was 42.11%, 64.86%, 47.37%, 73.53% and 76.47%, and the specificity was 90%, 81.36%, 96.36%, 61.02% and 58.18%, respectively. Spearman correlation analysis showed that tmeff1, SDPR and acbd7 were associated with the occurrence of bladder cancer. The ROC curve of the combined diagnosis of the three and the two combined diagnoses suggested that the area under the curve of the combined diagnosis of SDPR and acbd7 was 0.7945, the sensitivity was 89.09%, and the specificity was 60.53%. CONCLUSION: The gene expression profile in urinary exosomes of bladder cancer patients has changed significantly, and the differential genes may play an important biological role in the occurrence and development of bladder cancer. The combined detection of urinary exosome SDPR and ACBD7 has a certain diagnostic value for bladder cancer.


Assuntos
MicroRNAs , Neoplasias da Bexiga Urinária , Humanos , RNA Mensageiro/genética , Perfilação da Expressão Gênica , Fosfatidilinositol 3-Quinases/genética , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Biomarcadores , MicroRNAs/genética
17.
J Exp Clin Cancer Res ; 43(1): 50, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38365726

RESUMO

BACKGROUND: Phosphatase and tensin homolog deleted on chromosome ten (PTEN) serves as a powerful tumor suppressor, and has been found to be downregulated in human bladder cancer (BC) tissues. Despite this observation, the mechanisms contributing to PTEN's downregulation have remained elusive. METHODS: We established targeted genes' knockdown or overexpressed cell lines to explore the mechanism how it drove the malignant transformation of urothelial cells or promoted anchorageindependent growth of human basal muscle invasive BC (BMIBC) cells. The mice model was used to validate the conclusion in vivo. The important findings were also extended to human studies. RESULTS: In this study, we discovered that mice exposed to N-butyl-N-(4-hydroxybu-tyl)nitrosamine (BBN), a specific bladder chemical carcinogen, exhibited primary BMIBC accompanied by a pronounced reduction in PTEN protein expression in vivo. Utilizing a lncRNA deep sequencing high-throughput platform, along with gain- and loss-of-function analyses, we identified small nucleolar RNA host gene 1 (SNHG1) as a critical lncRNA that might drive the formation of primary BMIBCs in BBN-treated mice. Cell culture results further demonstrated that BBN exposure significantly induced SNHG1 in normal human bladder urothelial cell UROtsa. Notably, the ectopic expression of SNHG1 alone was sufficient to induce malignant transformation in human urothelial cells, while SNHG1 knockdown effectively inhibited anchorage-independent growth of human BMIBCs. Our detailed investigation revealed that SNHG1 overexpression led to PTEN protein degradation through its direct interaction with HUR. This interaction reduced HUR binding to ubiquitin-specific peptidase 8 (USP8) mRNA, causing degradation of USP8 mRNA and a subsequent decrease in USP8 protein expression. The downregulation of USP8, in turn, increased PTEN polyubiquitination and degradation, culminating in cell malignant transformation and BMIBC anchorageindependent growth. In vivo studies confirmed the downregulation of PTEN and USP8, as well as their positive correlations in both BBN-treated mouse bladder urothelium and tumor tissues of bladder cancer in nude mice. CONCLUSIONS: Our findings, for the first time, demonstrate that overexpressed SNHG1 competes with USP8 for binding to HUR. This competition attenuates USP8 mRNA stability and protein expression, leading to PTEN protein degradation, consequently, this process drives urothelial cell malignant transformation and fosters BMIBC growth and primary BMIBC formation.


Assuntos
RNA Longo não Codificante , Neoplasias da Bexiga Urinária , Animais , Humanos , Camundongos , Carcinogênese/genética , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Camundongos Nus , Músculos/metabolismo , Músculos/patologia , Proteólise , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , RNA Longo não Codificante/genética , RNA Mensageiro/metabolismo , Regulação para Cima , Neoplasias da Bexiga Urinária/induzido quimicamente , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo
18.
Cell Mol Biol Lett ; 29(1): 28, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395751

RESUMO

BACKGROUND: Bladder cancer (BCa) ranks among the predominant malignancies affecting the urinary system. Cisplatin (CDDP) remains a cornerstone therapeutic agent for BCa management. Recent insights suggest pivotal roles of circular RNA (circRNA) and N6-methyladenosine (m6A) in modulating CDDP resistance in BCa, emphasizing the importance of elucidating these pathways to optimize cisplatin-based treatments. METHODS: Comprehensive bioinformatics assessments were undertaken to discern circ_104797 expression patterns, its specific interaction domains, and m6A motifs. These findings were subsequently corroborated through experimental validations. To ascertain the functional implications of circ_104797 in BCa metastasis, in vivo assays employing CRISPR/dCas13b-ALKBH5 were conducted. Techniques, such as RNA immunoprecipitation, biotin pull-down, RNA pull-down, luciferase reporter assays, and western blotting, were employed to delineate the underlying molecular intricacies. RESULTS: Our investigations revealed an elevated expression of circ_104797 in CDDP-resistant BCa cells, underscoring its pivotal role in sustaining cisplatin resistance. Remarkably, demethylation of circ_104797 markedly augmented the potency of cisplatin-mediated apoptosis. The amplification of circ_104797 in CDDP-resistant cells was attributed to enhanced RNA stability, stemming from an augmented m6A level at a distinct adenosine within circ_104797. Delving deeper, we discerned that circ_104797 functioned as a microRNA reservoir, specifically sequestering miR-103a and miR-660-3p, thereby potentiating cisplatin resistance. CONCLUSIONS: Our findings unveil a previously uncharted mechanism underpinning cisplatin resistance and advocate the potential therapeutic targeting of circ_104797 in cisplatin-administered patients with BCa, offering a promising avenue for advanced BCa management.


Assuntos
Adenosina/análogos & derivados , MicroRNAs , Neoplasias da Bexiga Urinária , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos/genética
19.
Biol Direct ; 19(1): 17, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409085

RESUMO

Bladder cancer (BC) is the fourth and tenth most common malignancy in men and women worldwide, respectively. The complexity of the molecular biological mechanism behind BC is a major contributor to the lack of effective treatment management of the disease. The development and genesis of BC are influenced by mitochondrial retrograde control and mitochondria-nuclear cross-talk. However, the role of mitochondrial-related genes in BC remains unclear. In this study, we analyzed TCGA datasets and identified 752 DE-MRGs in BC samples, including 313 down-regulated MRGs and 439 up-regulated MRGs. Then, the results of machine-learning screened four critical diagnostic genes, including GLRX2, NMT1, PPP2R2B and TRAF3IP3. Moreover, we analyzed their prognostic value and confirmed that only PPP2R2B was associated with clinical prognosis of BC patients and Cox regression assays validated that PPP2R2B expression was a distinct predictor of overall survival in BC patients. Them, we performed RT-PCR and found that PPP2R2B expression was distinctly decreased in BC specimens and cell lines. Functional experiments revealed that overexpression of PPP2R2B distinctly suppressed the proliferation, migration and invasion of BC cells via Wnt signaling pathway. In summary, these research findings offer potential molecular markers for the diagnosis and prognosis of BC, with the discovery of PPP2R2B particularly holding significant biological and clinical significance. This study provides valuable clues for future in-depth investigations into the molecular mechanisms of BC, as well as the development of new diagnostic markers and therapeutic targets.


Assuntos
Neoplasias da Bexiga Urinária , Via de Sinalização Wnt , Masculino , Humanos , Feminino , Via de Sinalização Wnt/genética , Linhagem Celular Tumoral , Biomarcadores , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo
20.
Chem Biodivers ; 21(3): e202301645, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38235946

RESUMO

This study examines the potential of herniarin from tarragon, as an agent with multifaceted effects on bladder cancer cells and investigates herniarin's impact on cell viability, migration, cell cycle regulation, apoptosis induction, and Erk signaling pathways in bladder cancer cell lines, including RT-112 (grade 1, non-invasive), HTB9 (grade 2, invasive), and HT1376 (grade 3, invasive), through comprehensive in vitro experiments. The compound causes cell cycle arrest at distinct phases in different cell lines: G1/S arrest in RT112 cells, G2/M arrest in HTB9 cells, and S phase arrest in HT1376 cells. Furthermore, herniarin induces caspase-mediated apoptosis in various cell lines and simultaneously modulates protein levels of apoptotic and anti-apoptotic proteins, indicating its potential as a therapeutic agent. Herniarin's influence also extends to Erk signaling, a crucial pathway that regulates cell growth and differentiation. In conclusion, this study reveals herniarin's potential as a versatile agent in the treatment of bladder cancer.


Assuntos
Apoptose , Umbeliferonas , Neoplasias da Bexiga Urinária , Humanos , Sobrevivência Celular , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Ciclo Celular , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/metabolismo , Proliferação de Células , Pontos de Checagem do Ciclo Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...